By Topic

Graph Connectivities, Network Coding, and Expander Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ho Yee Cheung ; Chinese Univ. of Hong Kong, Hong Kong, China ; Lap Chi Lau ; Kai Man Leung

We present a new algebraic formulation to compute edge connectivities in a directed graph, using the ideas developed in network coding. This reduces the problem of computing edge connectivities to solving systems of linear equations, thus allowing us to use tools in linear algebra to design new algorithms. Using the algebraic formulation we obtain faster algorithms for computing single source edge connectivities and all pairs edge connectivities, in some settings the amortized time to compute the edge connectivity for one pair is sub linear. Through this connection, we have also found an interesting use of expanders and super concentrators to design fast algorithms for some graph connectivity problems.

Published in:

Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on

Date of Conference:

22-25 Oct. 2011