By Topic

Coin Flipping with Constant Bias Implies One-Way Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Haitner, I. ; Sch. of Comput. Sci., Tel Aviv Univ., Tel Aviv, Israel ; Omri, E.

It is well known (cf., Impagliazzo and Luby [FOCS '89]) that the existence of almost all "interesting" cryptographic applications, i.e., ones that cannot hold information theoretically, implies one-way functions. An important exception where the above implication is not known, however, is the case of coin-flipping protocols. Such protocols allow honest parties to mutually flip an unbiased coin, while guaranteeing that even a cheating (efficient) party cannot bias the output of the protocol by much. Impagliazzo and Luby proved that coin-flipping protocols that are safe against negligible bias do imply one-way functions, and, very recently, Maji, Prabhakaran, and Sahai [FOCS '10] proved the same for constant-round protocols (with any non-trivial bias). For the general case, however, no such implication was known. We make progress towards answering the above fundamental question, showing that (strong) coin-flipping protocols safe against a constant bias (concretely, (√2 -1)/2 - o(1)) imply one-way functions.

Published in:

Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on

Date of Conference:

22-25 Oct. 2011