Cart (Loading....) | Create Account
Close category search window

Fuzzy-based adaptive cross layer routing protocol for mobile ad hoc networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fathy, C. ; Dept. of Comput. Eng., Arab Acad. for Sci. & Technol. & Maritime Transp., Alexandria, Egypt ; El-Hadidi, M.T. ; El-Nasr, M.A.

The performance of mobile ad hoc networks depends on the adaptability of its underlying routing protocol to current network conditions. Mobility, traffic load, and traffic type (Delay-Sensitive application or Delay-Tolerant application) are factors affecting the performance of routing protocols in mobile network environment. We carry out an extensive simulation study to investigate the traffic and mobility conditions required to get the paramount performance of popular routing protocols belonging to reactive and proactive routing. Then, we develop a routing protocol that enables each mobile node to switches between reactive routing mode and proactive routing mode based on the current node status. It utilizes a fuzzy-based routing mode selector whose inputs are the number of link breaks (LB), the interface queue length (IFQL), and the type of application for each node (whether Delay-Tolerant ”DT” or Delay-Sensitive ”DS”). Since the suggested routing protocol (which belongs to Layer 3) is determined based on Layer 1 information (LB), Layer 2 information (IFQL) and Layer 7 information (type of application), it is called Adaptive Cross-layer Routing Protocol (ACRP). Using the well-known network simulation package ns-2, it has been shown that the newly proposed ACRP protocol outperforms conventional mobile ad hoc network routing protocols such as AODV (pure reactive), DSDV (pure proactive), and IRA (mixed proactive and reactive). Numerical results indicate up to 19.5% improvement in packet-delivery ratio (PDR), up to 78.5% improvement in average end-to-end delay (ETED), up to 78.5% improvement in route-discovery latency, and up to 22.8% improvement in average discovery path length.

Published in:

Performance Computing and Communications Conference (IPCCC), 2011 IEEE 30th International

Date of Conference:

17-19 Nov. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.