Cart (Loading....) | Create Account
Close category search window
 

An efficient SVM-based method for multi-class network traffic classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Multi-class network traffic classification is a fundamental function for network services and management. Support vector machine (SVM) based network traffic classification has recently attracted increasing interest, for its high accuracy and low training sample size requirement. However, to better fit applications with delay requirements, it is desirable to reduce the high computation cost of existing SVM-based traffic classifiers. In this paper, we propose a novel scheme for SVM-based traffic classification (called fuzzy tournament). Experiment results based on real network traffic traces show that our proposed scheme can reduce computation cost by as much as 7.65 times; in the mean time, misclassification ratio is consistently reduced by up to 2.35 times as well.

Published in:

Performance Computing and Communications Conference (IPCCC), 2011 IEEE 30th International

Date of Conference:

17-19 Nov. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.