By Topic

Reliability analysis of an energy-aware RAID system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Shu Yin ; Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849 ; Yun Tian ; Jiong Xie ; Xiao Qin
more authors

We develop a mathematical model - MREED - to quantitatively evaluate the failure rate of energy-efficient parallel storage systems. The Power-Aware Redundant Array of Inexpensive Disk (PARAID) aims to reduce energy use of commodity server-class disks without specialized hardware. The goal of PARAID is to skewed striping pattern to adapt to the system load by changing the number of powered disks. By spinning down disks during light workloads, PARAID can reduce power consumption, while still meeting performance demands. We show that MREED can be used to estimate a five-disk PARAID-0 system. We validate the accuracy of MREED using the DiskSim simulator. Our approach shows that MREED can rely on file access pattern to estimate system utilization correctly. Furthermore, even thought PARAID may achieve reasonable reliability, our model shows that PARAID's reliability is affected by data locality.

Published in:

30th IEEE International Performance Computing and Communications Conference

Date of Conference:

17-19 Nov. 2011