By Topic

Analog front-end circuit with low-noise amplifier and high-pass sigma-delta modulator for an EEG or ECoG acquisition system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jia-Hua Hong ; Dept. of Electr. Eng., Nat. Chung Cheng Univ., Ming-Hsiung, Taiwan ; Ming-Chun Liang ; Ming-Yang Haung ; Tsung-Heng Tsai
more authors

The present paper proposes an analog front-end (AFE) circuit, including only one low-noise amplifier with chopping techniques and one high-pass sigma-delta modulator (HPSDM), which can be applied as a sensing circuit for electroencephalogram or electrocorticogram (ECoG) signal acquisition systems. The low-noise amplifier, which has a close-loop gain of 20 V/V and CMRR of 109.6 dB, is implemented by a differential difference amplifier with feedback pseudo-resistors and capacitors. The HPSDM is implemented in a feed-forward architecture with an order of 3, an oversampling ratio of 128, and a 1-bit quantizer under a sampling frequency of 51.2 kHz. The TSMC 0.18 μm 1P6M CMOS process is used in the entire AFE circuit with a supply voltage of 1.2 V and power consumption of 28.7 μW. Within the maximum range of ECoG signals, the simulated SNR and SFDR of the entire AFE circuits are 70.8 and 73 dB, respectively.

Published in:

Bioelectronics and Bioinformatics (ISBB), 2011 International Symposium on

Date of Conference:

3-5 Nov. 2011