By Topic

Transport-Based Load Modeling and Sliding Mode Control of Plug-In Electric Vehicles for Robust Renewable Power Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bashash, S. ; Dept. of Mech. & Nucl. Eng., Pennsylvania State Univ., University Park, PA, USA ; Fathy, H.K.

This paper develops a modeling and control paradigm for the aggregate charging dynamics of plug-in electric vehicles (PEVs). The central goal of the paper is to derive a control policy that can adapt the aggregate charging power of PEVs to highly intermittent renewable power. The key assumption here is that the grid is able to directly control the charging power of PEVs in real-time, through broadcasting a universal control signal. Using the transport-based load modeling principle, we develop a partial differential equation model for the collective charging of PEVs. We use real driving data to simulate the model and validate it against a PEV Monte Carlo simulation model. Adopting the sliding mode control theory, we then develop a robust output tracking controller for the system. The controller uses the real-time error between power supply and demand as the only measured signal, and attempts to suppress it despite the variation of the population of PEVs on the grid. We examine the performance of the controller using numerical simulations on a real wind power trajectory.

Published in:

Smart Grid, IEEE Transactions on  (Volume:3 ,  Issue: 1 )