By Topic

A fast iterative solution for worst-case parameter estimation with bounded model uncertainties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. H. Sayed ; Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA ; A. Garulli ; S. Chandrasekaran

Deals with the problem of worst-case parameter estimation in the presence of bounded uncertainties in a linear regression model. The problem has been formulated and solved in Chandrasekaran et al. (1997). It distinguishes itself from other estimation schemes, such as total-least-squares and H, methods, in that it explicitly incorporates an a-priori bound on the size of the uncertainties. The closed-form solution in the above mentioned articles, however, requires the computation of the SVD of the data matrix and the determination of the unique positive root of a nonlinear equation. This paper establishes the existence of a fundamental contraction mapping and uses this observation to propose an approximate recursive algorithm that avoids the need for explicit SVDs and for the solution of the nonlinear equation. Simulation results are included to demonstrate the good performance of the recursive scheme

Published in:

American Control Conference, 1997. Proceedings of the 1997  (Volume:3 )

Date of Conference:

4-6 Jun 1997