By Topic

Planar Leaky-Wave Antenna With Flexible Control of the Complex Propagation Constant

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alejandro Javier Martinez-Ros ; Department of Communication and Information Technologies, Universidad Politécnica de Cartagena, Cartagena, Spain ; José Luis Gomez-Tornero ; George Goussetis

This communication demonstrates for the first time the capability to independently control the real and imaginary parts of the complex propagation constant in planar, printed circuit board compatible leaky-wave antennas. The structure is based on a half-mode microstrip line which is loaded with an additional row of periodic metallic posts, resulting in a substrate integrated waveguide SIW with one of its lateral electric walls replaced by a partially reflective wall. The radiation mechanism is similar to the conventional microstrip leaky-wave antenna operating in its first higher-order mode, with the novelty that the leaky-mode leakage rate can be controlled by virtue of a sparse row of metallic vias. For this topology it is demonstrated that it is possible to independently control the antenna pointing angle and main lobe beamwidth while achieving high radiation efficiencies, thus providing low-cost, low-profile, simply fed, and easily integrable leaky-wave solutions for high-gain frequency beam-scanning applications. Several prototypes operating at 15 GHz have been designed, simulated, manufactured and tested, to show the operation principle and design flexibility of this one dimensional leaky-wave antenna.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:60 ,  Issue: 3 )