By Topic

Demonstration of Flexible Optical Network Based on Path Computation Element

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

Flexible optical networks, based on bandwidth-variable optical cross-connects (BV-OXCs) and novel flexible transponders, are expected to significantly improve the overall spectrum efficiency with respect to traditional networks where fixed frequency spacing is applied. Flexible optical networks will exploit the BV-OXC capability to dynamically configure the reserved bandwidth as a set of frequency slots. In addition, flexible transponders will be employed to dynamically configure transmission parameters, such as bit-rate and modulation format. To enable these new configuration capabilities, network operation enhancements need to be efficiently introduced and investigated. In this study, we focus for the first time on the Path Computation Element (PCE) architecture for flexible optical networks. PCE architecture and PCE communication protocol are enhanced to maximize the spectral efficiency and to provide indications also on the specific transmission parameters to configure. Experimental demonstration is provided through two different experiments, successfully showing the PCE capability to trigger dynamic rerouting with bit-rate or modulation format adaptation. In particular, the experiments demonstrate, in a real testbed, dynamic frequency slot assignment and format adaptation from DP-16QAM to DP-QPSK at 100 Gb/s, and bit-rate adaptation at DP-16QAM from 200 Gb/s to 100 Gb/s.

Published in:

Journal of Lightwave Technology  (Volume:30 ,  Issue: 5 )