By Topic

Recursive segmentation and recognition templates for image parsing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Long Zhu ; Univ. of California, Los Angeles, Los Angeles, CA, USA ; Yuanhao Chen ; Yuan Lin ; Chenxi Lin
more authors

In this paper, we propose a Hierarchical Image Model (HIM) which parses images to perform segmentation and object recognition. The HIM represents the image recursively by segmentation and recognition templates at multiple levels of the hierarchy. This has advantages for representation, inference, and learning. First, the HIM has a coarse-to-fine representation which is capable of capturing long-range dependency and exploiting different levels of contextual information (similar to how natural language models represent sentence structure in terms of hierarchical representations such as verb and noun phrases). Second, the structure of the HIM allows us to design a rapid inference algorithm, based on dynamic programming, which yields the first polynomial time algorithm for image labeling. Third, we learn the HIM efficiently using machine learning methods from a labeled data set. We demonstrate that the HIM is comparable with the state-of-the-art methods by evaluation on the challenging public MSRC and PASCAL VOC 2007 image data sets.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 2 )