By Topic

On the Joint Estimation of the RSS-Based Location and Path-loss Exponent

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Salman, N. ; Sch. of Electron. & Electr. Eng., Univ. of Leeds, Leeds, UK ; Ghogho, M. ; Kemp, A.H.

Due to its straightforward implementation, the received signal strength (RSS) has been an advantageous approach for low cost localization systems. Although the propagation model is difficult to characterize in uncertain environments, the majority of current studies assume to have exact knowledge of the path-loss exponent (PLE). This letter deals with RSS based localization in an unknown path-loss model. First, we derive an analytical expression for the mean square error on location estimates for incorrect PLE assumption and examine, via simulation, the effects of error in the PLE on the location accuracy. Second, we enhance a previously proposed RSS-PLE joint estimator (JE) by reducing its complexity. We also propose a maximum a posteriori (MAP) estimator by considering the PLE as an unknown random variable. Finally, we derive the Hybrid Cramer Rao Bound (HCRB) as a benchmark for the MAP estimator. Error analysis results predict large error due to incorrect PLE assumption which are in agreement with the simulation results. Further simulations show that the MAP estimator exhibits better performance at low signal to noise ratio (SNR) and that the relation between the HCRB and CRB depends on the network geometry.

Published in:

Wireless Communications Letters, IEEE  (Volume:1 ,  Issue: 1 )