By Topic

SimPL: An Effective Placement Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Myung-Chul Kim ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA ; Dong-Jin Lee ; Markov, I.L.

We propose a self-contained, flat, quadratic global placer that is simpler than existing placers and easier to integrate into timing-closure flows. It maintains lower-bound and upper-bound placements that converge to a final solution. The upper-bound placement is produced by a novel look-ahead legalization algorithm. Our placer SimPL outperforms mPL6, FastPlace3, NTUPlace3, APlace2, and Capo simultaneously in runtime and solution quality, running 7.10 times faster than mPL6 (when using a single thread) and reducing wirelength by 3% on the ISPD 2005 benchmark suite. More significant improvements are achieved on larger benchmarks. The new algorithm is amenable to parallelism, and we report empirical studies with SSE2 instructions and up to eight parallel threads.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:31 ,  Issue: 1 )