By Topic

A Parallel Simulation Technique for Multicore Embedded Systems and Its Performance Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dukyoung Yun ; Sch. of Electr. Eng. & Comput. Sci., Seoul Nat. Univ., Seoul, South Korea ; Sungchan Kim ; Soonhoi Ha

A virtual prototyping system is constructed by replacing real processing components with component simulators running concurrently. The performance of such a distributed simulation decreases drastically as the number of component simulators increases. Thus, we propose a novel parallel simulation technique to boost up the simulation speed. In the proposed technique, a simulator wrapper performs time synchronization with the simulation backplane on behalf of the associated component simulator itself. Component simulators send null messages periodically to the backplane to enable parallel simulation without any causality problems. Since excessive communication may degrade the simulation performance, we also propose a novel performance analysis technique to determine an optimal period of null message transfer, considering both the characteristics of a target application and the configurations of the simulation host. Through intensive experiments, we show that the proposed parallel simulation achieves almost linear speedup to the number of processor cores if the frequency of null message transfer is optimally decided. The proposed analysis technique could predict the simulation performance with more than 90% accuracy in the worst case for various target applications and simulation environments we have used for experiments.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:31 ,  Issue: 1 )