By Topic

Memory-Efficient On-Chip Network With Adaptive Interfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Masoud Daneshtalab ; Department of Information Technology, University of Turku, Turku, Finland ; Masoumeh Ebrahimi ; Pasi Liljeberg ; Juha Plosila
more authors

To achieve higher memory bandwidth in network-based multiprocessor architectures, multiple dynamic random access memories can be accessed simultaneously. In such architectures, not only resource utilization and latency are the critical issues but also a reordering mechanism is required to deliver the response transactions of concurrent memory accesses in-order. In this paper, we present a memory-efficient on-chip network architecture to cope with these issues efficiently. Each node of the network is equipped with a novel network interface (NI) to deal with out-of-order delivery, and a priority-based router to decrease the network latency. The proposed NI exploits a streamlined reordering mechanism to handle the in-order delivery and utilizes the advance extensible interface transaction-based protocol to maintain compatibility with existing intellectual property cores. To improve the memory utilization and reduce the memory latency, an optimized memory controller is integrated in the presented NI. Experimental results with synthetic test cases demonstrate that the proposed on-chip network architecture provides significant improvements in average network latency (16%), average memory access latency (19%), and average memory utilization (22%).

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:31 ,  Issue: 1 )