Cart (Loading....) | Create Account
Close category search window
 

Buffer-Aware Network Coding for Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Chen ; Dept. of Electron. Eng., Tsinghua Univ., Beijing, China ; Letaief, K.B. ; Zhigang Cao

Network coding, which can combine various traffic flows or packets via algebraic operations, has the potential of achieving substantial throughput and power efficiency gains in wireless networks. As such, it is considered as a powerful solution to meet the stringent demands and requirements of next-generation wireless systems. However, because of the random and asynchronous packet arrivals, network coding may result in severe delay and packet loss because packets need to wait to be network-coded with each others. To overcome this and guarantee quality of service (QoS), we present a novel cross-layer approach, which we shall refer to as Buffer-Aware Network Coding, or BANC, which allows transmission of some packets without network coding to reduce the packet delay. We shall derive the average delay and power consumption of BANC by presenting a random mapping description of BANC and Markov models of buffer states. A cross-layer optimization problem that minimizes the average delay under a given power constraint is then proposed and analyzed. Its solution will not only demonstrate the fundamental performance limits of BANC in terms of the achievable delay region and delay-power tradeoff, but also obtains the delay-optimal BANC schemes. Simulation results will show that the proposed approach can strike the optimal tradeoff between power efficiency and QoS.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:20 ,  Issue: 5 )

Date of Publication:

Oct. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.