By Topic

Formal verification of phase-locked loops using reachability analysis and continuization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Matthias Althoff ; Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 ; Soner Yaldiz ; Akshay Rajhans ; Xin Li
more authors

We present an approach for verifying locking of charge-pump phase-locked loops by performing reachability analysis on a behavioral model of the circuit. Bounded uncertain parameters in the behavioral model make it possible to represent all possible behaviors of more detailed models. The dynamics of the behavioral model is hybrid (i.e., discrete and continuous) due to the switching of charge pumps that drive the analog control circuits. A unique feature of phase-locked loops compared to most other hybrid systems is that they require thousands of switchings in the continuous dynamics to converge sufficiently close to a limit cycle. This makes reachability analysis a challenging task since switches in the dynamics are expensive to compute and result in conservative overapproximations. We solve this problem by overapproximating the effects of the switching conditions with uncertain parameters in linear continuous models, a method we call continuization. Using efficient reachability algorithms for discrete-time linear systems, locking is verified over the complete range of possible initial states of a charge-pump PLL designed in 32nm CMOS SOI technology in comparable time required for Monte Carlo simulations of the same behavioral model.

Published in:

2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)

Date of Conference:

7-10 Nov. 2011