By Topic

Full-chip through-silicon-via interfacial crack analysis and optimization for 3D IC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Moongon Jung ; Sch. of ECE, Georgia Inst. of Technol., Atlanta, GA, USA ; Xi Liu ; Sitaraman, S.K. ; Pan, D.Z.
more authors

In this work, we propose an efficient and accurate full-chip through-silicon-via (TSV) interfacial crack analysis flow and design optimization methodology to alleviate TSV interfacial crack problems in 3D ICs. First, we analyze TSV interfacial crack at TSV/dielectric liner interface caused by TSV-induced thermo-mechanical stress. Then, we explore the impact of TSV placement in conjunction with various associated structures such as landing pad and dielectric liner on TSV interfacial crack. Next, we present a full-chip TSV interfacial crack analysis methodology based on design of experiments (DOE) and response surface method (RSM). Finally, we propose a design optimization methodology to mitigate the mechanical reliability problems in 3D ICs.

Published in:

Computer-Aided Design (ICCAD), 2011 IEEE/ACM International Conference on

Date of Conference:

7-10 Nov. 2011