Cart (Loading....) | Create Account
Close category search window
 

Device-architecture co-optimization of STT-RAM based memory for low power embedded systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Cong Xu ; Dept. of Comput. Sci. & Eng., Pennsylvania State Univ., University Park, PA, USA ; Dimin Niu ; Xiaochun Zhu ; Kang, S.H.
more authors

Spin-transfer torque random access memory (STT-RAM) is a fast, scalable, durable non-volatile memory which can be embedded into standard CMOS process. A wide range of write speeds from 1ns to 100ns have been reported for STT-RAM. The switching current of magnetic tunnel junction (MTJ) (which is the storage element of STT-RAM) is inversely proportional to the write pulse width. In this work, we propose a methodology to design STT-RAM for different optimization goals such as read performance, write performance and write energy by leveraging the trade-off between write current and write time of MTJ. We take the typical in-plane MTJ and advanced perpendicular MTJ (PMTJ) as our optimization targets. Our study shows that reducing write pulse width will harm read latency and energy. It is observed that “sweet spots” of write pulse width which minimize the write energy or write latency of STT-RAM caches may exist. The optimal write pulse width depends on MTJ specifications, STT-RAM capacity and I/O width. The simulation results indicate that by utilizing PMTJ, the optimized STT-RAM can compete against SRAM and DRAM as universal memory replacement in low power embedded systems.

Published in:

Computer-Aided Design (ICCAD), 2011 IEEE/ACM International Conference on

Date of Conference:

7-10 Nov. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.