By Topic

Unequal-error-protection codes in SRAMs for mobile multimedia applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xuebei Yang ; Department of Electrical and Computer Engineering, Rice University, Houston ; Kartik Mohanram

In this paper, we introduce unequal-error-protection error correcting codes (UEPECCs) to improve SRAM reliability at low supply voltages for mobile multimedia applications. The fundamental premise for our work is that in multimedia applications, different bits in the same SRAM word are usually not equally significant, and hence deserve different protection levels. The key innovation in our work includes (i) a novel metric, word mean squared error, to measure the reliability of a SRAM word when different bits are not equally significant and (ii) an optimization algorithm based on dynamic programming to construct the UEPECC that assigns different protection levels to bits according to their significance. The advantage of the UEPECC over the traditional equal-error-protection ECC is demonstrated using two representative multimedia applications. For the same area, power, and encoding/decoding latency, SRAMs with UEPECC increase the peak signal-to-noise ratio by 8 dB in image processing and incur 60% less errors on average in optical flow (motion vector) computation.

Published in:

2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)

Date of Conference:

7-10 Nov. 2011