System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Systolic architectures for the computation of the discrete Hartley and the discrete cosine transforms based on prime factor decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chakrabarti, C. ; Dept. of Electr. Eng., Maryland Univ., College Park, MD, USA ; JaJa, J.

Two-dimensional systolic array implementations for computing the discrete Hartley transform (DHT) and the discrete cosine transform (DCT) when the transform size N is decomposable into mutually prime factors are proposed. The existing two-dimensional formulations for DHT and DCT are modified, and the corresponding algorithms are mapped into two-dimensional systolic arrays. The resulting architecture is fully pipelined with no control units. The hardware design is based on bit serial left to right MSB (most significant bit) to LSB (least significant bit) binary arithmetic

Published in:

Computers, IEEE Transactions on  (Volume:39 ,  Issue: 11 )