By Topic

Dynamic Power Allocation Under Arbitrary Varying Channels—An Online Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Buchbinder, N. ; Comput. Sci. Dept., Open Univ., Raanana, Israel ; Lewin-Eytan, L. ; Menache, I. ; Naor, J.
more authors

A major problem in wireless networks is coping with limited resources, such as bandwidth and energy. These issues become a major algorithmic challenge in view of the dynamic nature of the wireless domain. We consider in this paper the single-transmitter power assignment problem under time-varying channels, with the objective of maximizing the data throughput. It is assumed that the transmitter has a limited power budget, to be sequentially divided during the lifetime of the battery. We deviate from the classic work in this area, which leads to explicit “water-filling” solutions, by considering a realistic scenario where the channel state quality changes arbitrarily from one transmission to the other. The problem is accordingly tackled within the framework of competitive analysis, which allows for worst-case performance guarantees in setups with arbitrarily varying channel conditions. We address both a “discrete” case, where the transmitter can transmit only at a fixed power level, and a “continuous” case, where the transmitter can choose any power level out of a bounded interval. For both cases, we propose online power-allocation algorithms with proven worst-case performance bounds. In addition, we establish lower bounds on the worst-case performance of any online algorithm and show that our proposed algorithms are optimal.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:20 ,  Issue: 2 )