Cart (Loading....) | Create Account
Close category search window
 

An analysis of scatter decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nicol, D.M. ; Dept. of Comput. Sci., Coll. of William & Mary, Williamsburg, VA, USA ; Saltz, J.H.

A formal analysis of a powerful mapping technique known as scatter decomposition is provided. Scatter decomposition divides an irregular computational domain into a large number of equally sized pieces and distributes them modularly among processors. A probabilistic model of workload in one dimension is used to formally explain why and when scatter decomposition works. The first result is that if a correlation in workload is a convex function of distance, then scattering a more finely decomposed domain yields a lower average processor workload variance. The second result shows that if the workload process is a stationary Gaussian and the correlation function decreases linearly in distance until becoming zero and then remain zero, scattering a more finely decomposed domain yields a lower expected maximum processor workload. It is shown that if the correlation function decreases linearly across the entire domain, then among all mappings that assign an equal number of domain pieces to each processor, scatter decomposition minimizes the average processor workload variance. The dependence of these results on the assumption of decreasing correlation is illustrated with situations where a coarser granularity actually achieves better load balance

Published in:

Computers, IEEE Transactions on  (Volume:39 ,  Issue: 11 )

Date of Publication:

Nov 1990

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.