Cart (Loading....) | Create Account
Close category search window

Compact Image Representation Model Based on Both nCRF and Reverse Control Mechanisms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hui Wei ; Dept. of Comput. Sci., Fudan Univ., Shanghai, China ; Xiao-Mei Wang ; Loi Lei Lai

The aim of this paper is to construct a bio-inspired hierarchical neural network that could accurately represent visual images and facilitate follow-up processing. Our computational model adopted a ganglion cell (GC) mechanism with a receptive field that dynamically self-adjusts according to the characteristics of an input image. For each GC, a micro neural circuit and a reverse control circuit were developed to self-adaptively resize the receptive field. An array was also designed to imitate the layer of GCs that perform image representation. Results revealed that this GC array could represent images from the external environment with a low processing cost, and this nonclassical receptive field mechanism could substantially improve both segmentation and integration processing. This model enables automatic extraction of blocks from images, which makes multiscale representation feasible. Importantly, once an original pixel-level image was reorganized into a GC array, semantic-level features emerged. Because GCs, like symbols, are discrete and separable, this GC-grained compact representation is open to operations that can manipulate images partially and selectively. Thus, the GC-array model provides a basic infrastructure and allows for high-level image processing.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:23 ,  Issue: 1 )

Date of Publication:

Jan. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.