By Topic

Model Selection for Gaussian Kernel PCA Denoising

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jorgensen, K.W. ; DTU Inf., Tech. Univ. of Denmark, Lyngby, Denmark ; Hansen, L.K.

We propose kernel parallel analysis (kPA) for automatic kernel scale and model order selection in Gaussian kernel principal component analysis (KPCA). Parallel analysis is based on a permutation test for covariance and has previously been applied for model order selection in linear PCA, we here augment the procedure to also tune the Gaussian kernel scale of radial basis function based KPCA. We evaluate kPA for denoising of simulated data and the U.S. postal data set of handwritten digits. We find that kPA outperforms other heuristics to choose the model order and kernel scale in terms of signal-to-noise ratio of the denoised data.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:23 ,  Issue: 1 )