Cart (Loading....) | Create Account
Close category search window
 

Performance Analysis of Si Nanowire Biosensor by Numerical Modeling for Charge Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xinrong Yang ; EE Dept., Univ. of Texas at Dallas, Richardson, TX, USA ; Frensley, W.R. ; Dian Zhou ; Wenchuang Hu

A numerical study on the operation of Si nanowire (NW) biosensors in charge-based sensing is presented. The simulation is built on physical models that, upon numerical convergence, coherently account for Fermi-Dirac, Poisson-Boltzman, site-binding and Gouy-Chapman-Stern theories in self-consistent manner. The method enables us to disentangle the impact of key design and experimental setup factors and assess their contribution to the sensitivity, linearity, and stability of such sensors. Our results quantitatively show SiNW sensor is significantly more stable when biased through solution gate than back gate; dense functional group at oxide surface and good SAM coverage are essential to linear and sensitive detection of uniformly distributed targets; compared to high concentration target detection, the effect of NW surface-to-volume ratio (S/V ) plays a more profound role in biomolecule detection when targets are at very low concentration, in which case, optimal S/V exists for a maximum sensitivity. Arbitrary down scaling beyond such S/V point may have reverse effect on sensor sensitivity.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:11 ,  Issue: 3 )

Date of Publication:

May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.