By Topic

A Novel Domain Adaptation Bayesian Classifier for Updating Land-Cover Maps With Class Differences in Source and Target Domains

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kanchan Bahirat ; Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, India ; Francesca Bovolo ; Lorenzo Bruzzone ; Subhasis Chaudhuri

This paper addresses the problem of land-cover map updating by classification of multitemporal remote-sensing images in the context of domain adaptation (DA). The basic assumptions behind the proposed approach are twofold. The first one is that training data (ground reference information) are available for one of the considered multitemporal acquisitions (source domain) whereas they are not for the other (target domain). The second one is that multitemporal acquisitions (i.e., target and source domains) may be characterized by different sets of classes. Unlike other approaches available in the literature, the proposed DA Bayesian classifier based on maximum a posteriori decision rule (DA-MAP) automatically identifies whether there exist differences between the set of classes in the target and source domains and properly handles these differences in the updating process. The proposed method was tested in different scenarios of increasing complexity related to multitemporal image classification. Experimental results on medium-resolution and very high resolution multitemporal remote-sensing data sets confirm the effectiveness and the reliability of the proposed DA-MAP classifier.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:50 ,  Issue: 7 )