We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Blind Image Quality Assessment Without Human Training Using Latent Quality Factors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mittal, A. ; Univ. of Texas at Austin, Austin, TX, USA ; Muralidhar, G.S. ; Ghosh, J. ; Bovik, A.C.

We propose a highly unsupervised, training free, no reference image quality assessment (IQA) model that is based on the hypothesis that distorted images have certain latent characteristics that differ from those of “natural” or “pristine” images. These latent characteristics are uncovered by applying a “topic model” to visual words extracted from an assortment of pristine and distorted images. For the latent characteristics to be discriminatory between pristine and distorted images, the choice of the visual words is important. We extract quality-aware visual words that are based on natural scene statistic features [1]. We show that the similarity between the probability of occurrence of the different topics in an unseen image and the distribution of latent topics averaged over a large number of pristine natural images yields a quality measure. This measure correlates well with human difference mean opinion scores on the LIVE IQA database [2].

Published in:

Signal Processing Letters, IEEE  (Volume:19 ,  Issue: 2 )