Cart (Loading....) | Create Account
Close category search window
 

Bimodal Weibull Distribution of Metal/High- \kappa Gate Stack TDDB—Insights by Scanning Tunneling Microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yew, K.S. ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Ang, D.S. ; Bersuker, G.

We provide new insights, via nanoscale TDDB testing, into the bimodal Weibull failure distribution obtained from area scaling of high-κ (HK) gate stack. Time-to-breakdown (BD) statistics for grain boundary (GB) and grain in a polycrystalline HK gate stack are obtained individually from localized constant voltage stressing via a scanning tunneling microscope. In spite of an initial difference in the preexisting defect density, no apparent difference in the Weibull slope is observed for the two sets of BD statistics. The bimodal Weibull distribution is shown to be a combined effect: 1) The steep Weibull slope of the lower percentile, arising from large-area devices, is related to BD at GBs, and 2) the upper percentile, arising from small-area devices, is mostly related to grain BDs. In this case, the Weibull slope is reduced by a small fraction of these devices exhibiting early failures due to GB BDs. We show directly that structural defects in an HK dielectric, particularly GBs, play an important role on its BD distribution.

Published in:

Electron Device Letters, IEEE  (Volume:33 ,  Issue: 2 )

Date of Publication:

Feb. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.