By Topic

Remote Attestation with Domain-Based Integrity Model and Policy Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wenjuan Xu ; Dept. of Comput. Sci. & Inf. Technol., Frostburg State Univ., Frostburg, MD, USA ; Xinwen Zhang ; Hongxin Hu ; Gail-Joon Ahn
more authors

We propose and implement an innovative remote attestation framework called DR@FT for efficiently measuring a target system based on an information flow-based integrity model. With this model, the high integrity processes of a system are first measured and verified, and these processes are then protected from accesses initiated by low integrity processes. Toward dynamic systems with frequently changed system states, our framework verifies the latest state changes of a target system instead of considering the entire system information. Our attestation evaluation adopts a graph-based method to represent integrity violations, and the graph-based policy analysis is further augmented with a ranked violation graph to support high semantic reasoning of attestation results. As a result, DR@FT provides efficient and effective attestation of a system's integrity status, and offers intuitive reasoning of attestation results for security administrators. Our experimental results demonstrate the feasibility and practicality of DR@FT.

Published in:

Dependable and Secure Computing, IEEE Transactions on  (Volume:9 ,  Issue: 3 )