Cart (Loading....) | Create Account
Close category search window
 

Density-Based Multifeature Background Subtraction with Support Vector Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bohyung Han ; Dept. of Comput. Sci. & Eng., POSTECH, Pohang, South Korea ; Davis, L.S.

Background modeling and subtraction is a natural technique for object detection in videos captured by a static camera, and also a critical preprocessing step in various high-level computer vision applications. However, there have not been many studies concerning useful features and binary segmentation algorithms for this problem. We propose a pixelwise background modeling and subtraction technique using multiple features, where generative and discriminative techniques are combined for classification. In our algorithm, color, gradient, and Haar-like features are integrated to handle spatio-temporal variations for each pixel. A pixelwise generative background model is obtained for each feature efficiently and effectively by Kernel Density Approximation (KDA). Background subtraction is performed in a discriminative manner using a Support Vector Machine (SVM) over background likelihood vectors for a set of features. The proposed algorithm is robust to shadow, illumination changes, spatial variations of background. We compare the performance of the algorithm with other density-based methods using several different feature combinations and modeling techniques, both quantitatively and qualitatively.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 5 )

Date of Publication:

May 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.