By Topic

Multihop cellular network optimization using genetic algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Velmurugan Ayyadurai ; Center for Communication Systems Research, University of Surrey, UK ; Klaus Moessner ; Rahim Tafazolli

Future cellular systems demand higher throughput as an important requirement, along with smaller cell sizes to characterize the performance of network services. This paper purposes a way to optimize the multihop cellular network (MCN) deployment in LTE-A/Mobile WiMAX broadband wireless access systems. A simple way to optimize the MCN is to associate direct and multihop users based on maximum channel quality and allocate the resources blocks dynamically based on traffic load balancing as adjustment variables. The changing traffic demands require dynamic network reconfiguration to maintain proportional fairness in achieving the throughput. A self optimizing network based on genetic algorithm (GA) is made to adaptively resize the cell coverage limit and dynamically allocate resources based on active user demands. A policy control scheme to control resource allocations between direct and multihop users can be either fixed resource allocation (FRA) or dynamic resource allocation (DRA).

Published in:

2011 7th International Conference on Network and Service Management

Date of Conference:

24-28 Oct. 2011