Cart (Loading....) | Create Account
Close category search window
 

Count Data Clustering Using Unsupervised Localized Feature Selection and Outliers Rejection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bouguila, N. ; Inst. for Inf. Syst. Eng., Concordia Univ., Montreal, QC, Canada

This paper presents an unsupervised statistical model for simultaneous clustering, feature selection and outlier rejection in the case of count data. The proposed model is based on a finite discrete mixture to which a uniform component is added to ensure robustness to outliers and noise. The consideration of a finite mixture model is justified by its flexibility, its solid grounding in the theory of statistics and its competitive results. We derive a complete maximum a posteriori learning approach that does not require a priori knowledge about the number of outliers and the number of clusters. A rigorous expectation maximization (EM) algorithm, based on the formulation of a maximum a posteriori (MAP) estimation, is also provided. We report experimental results of applying our model to the challenging problems of visual scenes categorization and texture discrimination.

Published in:

Tools with Artificial Intelligence (ICTAI), 2011 23rd IEEE International Conference on

Date of Conference:

7-9 Nov. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.