By Topic

An Expandable Hierarchical Statistical Framework for Count Data Modeling and Its Application to Object Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ali Shojaee Bakhtiari ; ECE, Concordia Univ., Montreal, QC, Canada ; Nizar Bouguila

The problem that we address in this paper is that of learning hierarchical object categories. Indeed, Digital media technology generates huge amount of non-textual information. Categorizing this information is a challenging task which has served important applications. An important part of this nontextual information is composed of images and videos which consists of various objects each of which may be used to effectively classify the images or videos. Object classification in computer vision can be looked upon from several different perspectives. From the structural perspective object classification models can be divided into flat and hierarchical models. Many of the well-known hierarchical structures proposed so far are based on the Dirichlet distribution. In this work, however, we present a generative hierarchical statistical model based on generalized Dirichlet distribution for the categorization of visual objects modeled as a set of local features describing patches detected using interest points detector. We demonstrate the effectiveness of the proposed model through extensive experiments.

Published in:

2011 IEEE 23rd International Conference on Tools with Artificial Intelligence

Date of Conference:

7-9 Nov. 2011