By Topic

ReadAid: A Robust and Fully-Automated Readability Assessment Tool

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rani Qumsiyeh ; Comput. Sci. Dept., Brigham Young Univ., Provo, UT, USA ; Yiu-Kai Ng

Reading is an integral part of educational development, however, it is frustrating for people who struggle to understand (are not motivated to read, respectively) text documents that are beyond (below, respectively) their readability levels. Finding appropriate reading materials, with or without first scanning through their contents, is a challenge, since there are tremendous amount of documents these days and a clear majority of them are not tagged with their readability levels. Even though existing readability assessment tools determine readability levels of text documents, they analyze solely the lexical, syntactic, and/or semantic properties of a document, which are neither fully-automated, generalized, nor well-defined and are mostly based on observations. To advance the current readability analysis technique, we propose a robust, fully-automated readability analyzer, denoted ReadAid, which employs support vector machines to combine features from the US Curriculum and College Board, traditional readability measures, and the author(s) and subject area(s) of a text document d to assess the readability level of d. ReadAid can be applied for (i) filtering documents (retrieved in response to a web query) of a particular readability level, (ii) determining the readability levels of digitalized text documents, such as book chapters, magazine articles, and news stories, or (iii) dynamically analyzing, in real time, the grade level of a text document being created. The novelty of ReadAid lies on using authorship, subject areas, and academic concepts and grammatical constructions extracted from the US Curriculum to determine the readability level of a text document. Experimental results show that ReadAid is highly effective and outperforms existing state-of-the-art readability assessment tools.

Published in:

2011 IEEE 23rd International Conference on Tools with Artificial Intelligence

Date of Conference:

7-9 Nov. 2011