Cart (Loading....) | Create Account
Close category search window
 

Impact of Plug-in Hybrid Electric Vehicles and their optimal deployment in Smart Grids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Paudyal, S. ; Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada ; Dahal, S.

This paper develops mathematical model of Plug-in Hybrid Electric Vehicles (PHEVs) combined with distribution system components model in an optimization framework, which can be used to study the impacts of PHEVs in distribution systems and also to optimally schedule numerous PHEVs connected to a distribution system for the benefits of distribution system operators (DSOs) and/or the PHEV owners. The developed mathematical model is based on the information exchange among individual PHEV and various entities, and on the communication and control capabilities which will eventually evolve in the Smart Grid. The developed model is first used to study the impacts of uncoordinated and coordinated charging of PHEVs in distribution system operations considering a 15-node distribution feeder with 10%, 25%, and 50% PHEV penetrations in residential loads. The results showed that the coordinated charging of PHEVs could be beneficial to the DSOs to reduce distribution losses, and to improve voltage profiles and load factor, while on the other hand, the uncoordinated charging leads to more losses and increased peak load despite yielding optimized energy costs for the PHEV owners.

Published in:

Universities Power Engineering Conference (AUPEC), 2011 21st Australasian

Date of Conference:

25-28 Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.