By Topic

Forecasting the usage of household appliances through power meter sensors for demand management in the smart grid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Barbato, A. ; Dipt. di Elettron. e Inf., Politec. di Milano, Milan, Italy ; Capone, A. ; Rodolfi, M. ; Tagliaferri, D.

Electricity demand management mechanisms are expected to play a key role in smart grid infrastructures to reduce buildings power demand at peak hours, by means of dynamic pricing strategies. Unfortunately these kinds of mechanisms require the users to manually set a lot of configuration parameters, thereby reducing the usability of these solutions. In this paper we propose a system, developed within the BEE Project, for predicting the usage of household appliances in order to automatically provide inputs to electricity management mechanism, exactly in the same way a user could do. In our architecture we use a wireless power meter sensor network to monitor home appliances consumption. Data provided by sensors are then processed every 24 hours to forecast which devices will be used on the next day, at what time and for how long. This information represents just the input parameters required by load demand management systems, hence avoiding complex manual settings by the user.

Published in:

Smart Grid Communications (SmartGridComm), 2011 IEEE International Conference on

Date of Conference:

17-20 Oct. 2011