By Topic

SSTP: A scalable and secure transport protocol for smart grid data collection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Young-Jin Kim ; Bell Labs., Alcatel-Lucent, Murray Hill, NJ, USA ; Kolesnikov, V. ; Hongseok Kim ; Thottan, M.

Emerging smart grid networks are expected to have massive amounts of data continuously generated from various measuring devices (intelligent sensors, advanced meters, electric vehicle charging stations) which are embedded in the power grid. Data generated from these measuring devices must be delivered securely and reliably to utility control centers for wide-area monitoring and control and to estimate the overall grid status in a timely and precise manner. The collected data is also used for incentivizing consumer participation for improving power stability. Transport protocol requirements for such periodic grid measurement data are characterized as lifetime-lived, secure, and reliable delivery of short flows (usually less than 1.5 KB) over utility-Wide Area Networks (WANs). However, our survey shows that there is no well-known transport protocol that can support the above characteristics in a scalable and light-weight manner. Motivated by this, we design a scalable and secure transport protocol, SSTP, exploiting the notion of a “State-token” which is issued with each server message and which is subsequently attached to corresponding client message delivered to the server. Compared with existing well-known transport and security schemes, SSTP enables scalable server deployments as servers do not keep state (for security and communication) per client and thus computation/memory overheads are significantly reduced.

Published in:

Smart Grid Communications (SmartGridComm), 2011 IEEE International Conference on

Date of Conference:

17-20 Oct. 2011