Cart (Loading....) | Create Account
Close category search window
 

Mechanical Behavior of HQ01, a {\hbox {Nb}}_{3}\hbox {Sn} Accelerator-Quality Quadrupole Magnet for the LHC Luminosity Upgrade

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

19 Author(s)
Ferracin, P. ; Lawrence Berkeley Nat. Lab., Berkeley, CA, USA ; Ambrosio, G. ; Anerella, M. ; Bossert, R.
more authors

HQ01 is a superconducting quadrupole magnet under development by the LHC Accelerator Research Program (LARP) as a part of an R&D effort to demonstrate that Nb3Sn magnet technology is a viable option for a future luminosity upgrade of the LHC. The design is characterized by a 120 mm bore, a maximum gradient of 219 T/m at 1.9 K, and a support structure based on an aluminum shell pre-tensioned by water-pressurized bladders. The shell-based structure concept has already been successfully implemented in previous LARP quadrupole magnets. In HQ01, the structure incorporates additional features designed to provide full alignment between the support structure components and the coils. Specifically, the coil azimuthal alignment is achieved through outer layer pole keys which, by intercepting part of the force applied by bladders and shell, remain clamped to bolted aluminum collars from assembly to full excitation. A sequence of assemblies and cool-downs were executed with different keys sizes to characterize the alignment system and its impact on coil pre-load, at both room temperature and at 4.5 K. This paper reports on the mechanical behavior of the HQ01, by summarizing the strain gauge data and comparing them with FEM model predictions.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:22 ,  Issue: 3 )

Date of Publication:

June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.