By Topic

A Nonpiecewise Model for Long-Channel Junctionless Cylindrical Nanowire FETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Juan P. Duarte ; Department of Electrical Engineering, KAIST, Daejeon, Korea ; Sung-Jin Choi ; Dong-Il Moon ; Yang-Kyu Choi

A nonpiecewise drain current model is formulated for long-channel junctionless (JL) cylindrical nanowire (CN) FETs. It is obtained by using the Pao-Sah integral and a continuous charge model, which is derived by extending the parabolic potential approximation in all regions of the device operation. The proposed nonpiecewise model analytically describes the bulk and surface current mechanisms in JL CN FETs from the subthreshold region through the linear region to the saturation region without any fitting parameters. In addition, for each of these operation regions, the model reduces to simple expressions that explain the working principle of JL CN FETs. The model is compared with numerical simulations and shows good agreement.

Published in:

IEEE Electron Device Letters  (Volume:33 ,  Issue: 2 )