By Topic

Globally stable robust tracking of nonlinear systems using variable structure control and with an application to a robotic manipulator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
L. -C. Fu ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; T. -L. Liao

The globally stable robust output tracking for a class of nonlinear systems is considered. Based only on the knowledge of the bounds on the uncertainties, a variable structure control (VSC) law is developed under the structure matching assumption. It is shown that the outputs of the closed-loop system asymptotically track given output trajectories despite the uncertainties while maintaining the boundedness of all signals inside the loop. All signals inside the loop are shown to be bounded for all time. To illustrate the efficiency of the controller, the approach is applied to the case of a two degree-of-freedom (DOF) robotic manipulator with variable payload. Numerical simulation results are also provided

Published in:

IEEE Transactions on Automatic Control  (Volume:35 ,  Issue: 12 )