By Topic

Mapping extended Kalman filters onto linear arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Baheti, R.S. ; General Electric Co., Schenectady, NY, USA ; O'Hallaron, D.R. ; Itzkowitz, Howard R.

Techniques for mapping extended Kalman filters onto linear arrays of programmable cells designed for real-time applications are described. First, a general method for mapping a standard (nonsquare root) Kalman filter, where the columns of the covariance matrix are updated in parallel, is introduced. Next, a general method for mapping a factorized (square root) filter, where fast Givens rotations are used to triangularize the prematrix and where rotations of the rows of the prematrix are performed in parallel, is introduced. These mappings are used to implement an extended Kalman filter commonly used in target tracking applications on the Warp computer. The Warp is a commercially available linear array of 10 or more programmable cells connected to an MC68020-based workstation. The Warp implementation of the standard Kalman filter running on 8 Warp cells achieves a measured speedup of 7 over the same filter running on a single cell. The Warp implementation of the factorized filter running on 10 Warp cells achieves a measured speedup of 2

Published in:

Automatic Control, IEEE Transactions on  (Volume:35 ,  Issue: 12 )