By Topic

Energy-Efficient Cooperative Spectrum Sensing by Optimal Scheduling in Sensor-Aided Cognitive Radio Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ruilong Deng ; State Key Lab. of Ind. Control Technol., Zhejiang Univ., Hangzhou, China ; Jiming Chen ; Chau Yuen ; Peng Cheng
more authors

A promising technology that tackles the conflict between spectrum scarcity and underutilization is cognitive radio (CR), of which spectrum sensing is one of the most important functionalities. The use of dedicated sensors is an emerging service for spectrum sensing, where multiple sensors perform cooperative spectrum sensing. However, due to the energy constraint of battery-powered sensors, energy efficiency arises as a critical issue in sensor-aided CR networks. An optimal scheduling of each sensor active time can effectively extend the network lifetime. In this paper, we divide the sensors into a number of nondisjoint feasible subsets such that only one subset of sensors is turned on at a period of time while guaranteeing that the necessary detection and false alarm thresholds are satisfied. Each subset is activated successively, and nonactivated sensors are put in a low-energy sleep mode to extend the network lifetime. We formulate such problem of energy-efficient cooperative spectrum sensing in sensor-aided CR networks as a scheduling problem, which is proved to be NP-complete. We employ Greedy Degradation to degrade it into a linear integer programming problem and propose three approaches, namely, Implicit Enumeration (IE), General Greedy (GG), and λ-Greedy (λG), to solve the subproblem. Among them, IE can achieve an optimal solution with the highest computational complexity, whereas GG can provide a solution with the lowest complexity but much poorer performance. To achieve a better tradeoff in terms of network lifetime and computational complexity, a brand new λG is proposed to approach IE with the complexity comparable with GG. Simulation results are presented to verify the performance of our approaches, as well as to study the effect of adjustable parameters on the performance.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:61 ,  Issue: 2 )