By Topic

Fast GPU Based Adaptive Filtering of 4D Echocardiography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mathias Broxvall ; Centre for Modeling and Simulation, Campus Alfred Nobel, Örebro University, Sweden ; Kent Emilsson ; Per Thunberg

Time resolved three-dimensional (3D) echocardiography generates four-dimensional (3D+time) data sets that bring new possibilities in clinical practice. Image quality of four-dimensional (4D) echocardiography is however regarded as poorer compared to conventional echocardiography where time-resolved 2D imaging is used. Advanced image processing filtering methods can be used to achieve image improvements but to the cost of heavy data processing. The recent development of graphics processing unit (GPUs) enables highly parallel general purpose computations, that considerably reduces the computational time of advanced image filtering methods. In this study multidimensional adaptive filtering of 4D echocardiography was performed using GPUs. Filtering was done using multiple kernels implemented in OpenCL (open computing language) working on multiple subsets of the data. Our results show a substantial speed increase of up to 74 times, resulting in a total filtering time less than 30 s on a common desktop. This implies that advanced adaptive image processing can be accomplished in conjunction with a clinical examination. Since the presented GPU processor method scales linearly with the number of processing elements, we expect it to continue scaling with the expected future increases in number of processing elements. This should be contrasted with the increases in data set sizes in the near future following the further improvements in ultrasound probes and measuring devices. It is concluded that GPUs facilitate the use of demanding adaptive image filtering techniques that in turn enhance 4D echocardiographic data sets. The presented general methodology of implementing parallelism using GPUs is also applicable for other medical modalities that generate multidimensional data.

Published in:

IEEE Transactions on Medical Imaging  (Volume:31 ,  Issue: 6 )