By Topic

Development of a Single-Sided Flux Magnetic Coupler for Electric Vehicle IPT Charging Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mickel Budhia ; The University of Auckland, Auckland, New Zealand ; John T. Boys ; Grant A. Covic ; Chang-Yu Huang

Inductive power transfer is a practical method for recharging electric vehicles because it is safe, convenient, and reliable. The performance of the magnetic couplers that transfer power determines the overall feasibility of a complete system. Circular couplers are the most common topology in the literature; however, they have fundamentally limited coupling. Their flux patterns necessarily limit the operational air gap as well as tolerance to horizontal misalignment. A new polarized coupler topology [referred to as a double D (DD)] is presented, which overcomes these difficulties. DDs provide a charge zone five times larger than that possible with circular pads for a similar material cost and are smaller. A 0.31-m2 DD enables 2 kW of power transfer over an oval area measuring 540 mm × 800 mm with a 200-mm air gap. Leakage magnetic fields have been investigated and show that circular and DD couplers operating under similar power transfer conditions produce similar levels. Both topologies can be designed and operated to ensure compliance with international guidelines.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:60 ,  Issue: 1 )