By Topic

Sparse Auditory Reproducing Kernel (SPARK) Features for Noise-Robust Speech Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fazel, A. ; Dept. of Electr. & Comput. Eng., Michigan State Univ., East Lansing, MI, USA ; Chakrabartty, S.

In this paper, we present a novel speech feature extraction algorithm based on a hierarchical combination of auditory similarity and pooling functions. The computationally efficient features known as “Sparse Auditory Reproducing Kernel” (SPARK) coefficients are extracted under the hypothesis that the noise-robust information in speech signal is embedded in a reproducing kernel Hilbert space (RKHS) spanned by overcomplete, nonlinear, and time-shifted gammatone basis functions. The feature extraction algorithm first involves computing kernel based similarity between the speech signal and the time-shifted gammatone functions, followed by feature pruning using a simple pooling technique (“MAX” operation). In this paper, we describe the effect of different hyper-parameters and kernel functions on the performance of a SPARK based speech recognizer. Experimental results based on the standard AURORA2 dataset demonstrate that the SPARK based speech recognizer delivers consistent improvements in word-accuracy when compared with a baseline speech recognizer trained using the standard ETSI STQ WI008 DSR features.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:20 ,  Issue: 4 )
Biometrics Compendium, IEEE