Cart (Loading....) | Create Account
Close category search window

Design and Tests of Coreless Inductive Superconducting Fault Current Limiter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kozak, J. ; Electrotech. Inst., Warsaw-Lab. of Supercond. Technol. in Lublin, Lublin, Poland ; Majka, M. ; Kozak, S. ; Janowski, T.

In this work, we report on the design and tests results of a coreless inductive SFCL with a 600 A rated current for MV distribution system. The fault current limiter comprises of 4 identical units immersed in liquid nitrogen bath. Each unit consists of 3 windings. The primary and secondary windings made of 2G HTS tape SF12050 are magnetically coupled with the primary Cu winding. The high magnetic coupling between superconducting primary and secondary windings gives a low voltage drop on the limiter at nominal current. The presented solution reduces the size and the weight of the device. Tests performed at high power test facility prove the limiting capability of the coreless inductive SFCL.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:22 ,  Issue: 3 )

Date of Publication:

June 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.