By Topic

Multi-component non-stationary exponential distributions of the breakdown voltages and time delays in neon ramp breakdown experiments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Stamenkovic, S. N. ; Department of Physics, University of Niš, P.O. BOX 224, 18001 Niš, Serbia ; Gocic, S. R. ; Markovic, V. Lj. ; Jovanovic, A. P.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The concept of physically based distributions used in studies concerning gas electrical breakdowns is introduced in this paper. The non-stationary exponential distribution of the breakdown voltages and time delays with time dependent distribution parameter is theoretically derived based on physical grounds starting from a binomial distribution for electron occurrence in the interelectrode gap. The experimental distributions of breakdown voltages Ub and time delays td are obtained by applying linearly rising (ramp) voltage pulses to the discharge tube with a hard galvanic layer of gold on the cathode and modeled by multi-component non-stationary exponential distribution, as well as by a Weibull distribution for the sake of comparison. In order to fit the experimental data, the multi-component voltage/time dependent distribution parameter YP is introduced, where Y is electron yield (number of generated electrons in the interelectrode gap per second), and P is breakdown probability (the probability of one electron to cause a breakdown). It is shown that multi-component non-stationary exponential distribution is suitable for modeling of the experimental data when time varying voltage pulses are applied to the discharge tube.

Published in:

Journal of Applied Physics  (Volume:110 ,  Issue: 10 )