By Topic

Mechanical characterization of tissue mimicking phantoms by broadband surface acoustic waves

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sinan Li ; Sch. of Eng., Phys. & Math. Univ. of Dundee Dundee, Dundee, UK ; Yuns Heng Qi ; Cheng Wei ; Zhihong Huang
more authors

Surface acoustic waves (SAWs) shows great potential in non-destructive mechanical characterization, it promises a non-invasive method of diagnosis of cirrhosis cutaneous and subcutaneous tissues. This paper explores a rapid way to evaluate the elastic property of soft tissue mimicking phantom by the analysis of SAWs phase velocity. An electromagnetic shaker with a line source was used to generate SAWs by square wave stimulus. A laser-vibrometer with displacement decoding mode was used to detect the SAWs. The phase velocities on agar phantoms were estimated. The result showed that the evaluation of SAWs phase velocity could be served as an accurate and rapid estimation of elasticity properties of soft materials.

Published in:

Biomedical Engineering and Informatics (BMEI), 2011 4th International Conference on  (Volume:4 )

Date of Conference:

15-17 Oct. 2011