By Topic

Protein-protein interaction extraction from bio-literature with compact features and data sampling strategy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hongtao Zhang ; State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Computer Sci. and Tech, Tsinghua University, Beijing 100084, China ; Minglie Huang ; Xiaoyan Zhu

A large number of protein-protein interactions (PPIs) have buried in massive biomedical articles published over the years. This leads to the development of automatic PPI extraction methods. However, existing methods based on supervised machine learning still face some challenges: (1) the feature space exploited in these methods is very sparse; and (2) the data used for training are imbalanced with respect to categories to be classified. In this paper, we first construct rich and compact features to alleviate the issue of feature sparseness. With these features, our method outperforms baselines by up to an F-score of 9.58% on the original AIMed corpus. Furthermore, we propose a data sampling strategy based on under-sampling to address the class imbalance problem. In order to re-balance data distribution, samples of the majority class are removed according to the prediction results iteratively. By this means, our method achieves a further 2.49% improvement in F-score on the original AIMed corpus.

Published in:

2011 4th International Conference on Biomedical Engineering and Informatics (BMEI)  (Volume:4 )

Date of Conference:

15-17 Oct. 2011